Analsysis of Aster Gdem Elevation Models
نویسندگان
چکیده
Digital elevation models (DEM) are of fundamental importance for remote sensing. With a DEM the three-dimensional positioning, requiring a stereo model can be reduced to a two-dimensional solution just based on a single image. With the free of charge availability of the SRTM-height models, covering the land area from 56° southern up to 60.25° northern latitude a nearly world wide coverage is given. But especially in mountainous regions and dry sand deserts the original SRTM DEMs have gaps in the original SRTM data. Now with the also free of charge available ASTER GDEM the area from 83° southern up to 83° northern latitude is covered. For areas where both height models exist, it is the question which height model should be preferred. Outside the USA the SRTM height data have a spacing of 3 arcsec (nearly 90m), while the ASTER GDEM has a spacing of just 1 arcsec (nearly 30m). The decision for the selection of the DEM is based on accuracy, homogeneity, reliability, completeness and morphologic details. In test areas with precise reference height models, located in the USA, Germany, France, Poland, Turkey and Jordan and with different morphology as mountainous, rolling, flat and urban and also with different land classes, the ASTER GDEM has been analyzed and compared with SRTM DEM as well as with SPOT 5 HRS and Cartosat 1 height models. ASTER GDEM in most cases shows improved accuracy with a higher number of number of stacks (number of images used for overlapping height models). But the accuracy improvement with more stacks is smaller as it should be for random data. The number of used stacks per DEM-point varies strongly depending upon the area. Especially in areas with low cloud coverage and higher imaging priority a high number of stacks have been used opposite to areas often covered by clouds and having lower imaging priority, where the dominating number of DEM-points may be located only in 2 stacks. Based on own matching results with ASTER images quite more morphologic details have been expected in ASTER GDEM having 1 arcsec point spacing as in SRTM height models with 3 arcsec spacing, but the analyzed data show only slightly more morphologic details as the SRTM 3” height model. SRTM as well as ASTER height models are strongly depending upon the morphology and the land coverage, so not a homogenous accuracy can be expected. In addition, as all height models, the accuracy depends usually linear upon the tangent of terrain slope, so the standard deviation of height (SZ) should be given in the form SZ = a + b∗tan(terrain slope). Not only the standard deviation is important, the height models have different systematic errors (bias). The bias in X, Y and Z is larger for ASTER GDEM as for SRTM DEMs. Horizontal shifts have been determined by adjustment of the ASTER GDEMs against the reference height model. In general the SRTM height models are slightly more accurate as the ASTER GDEM.
منابع مشابه
Error Estimation of Aster Gdem for Regional Applications - Comparison to Aster Dem and Als Elevation Models
The last 20 years show an enormous resolution improvement of worldwide available Digital Elevation Models. At present, the ASTER Global Digital Elevation Model (GDEM) with a resolution of 30 m shows an evolution from the GTOPO 30 model (1000 m) of the year 1996 and the SRTM model (90 m) of the year 2000. However, little is known about the accuracy of the ASTER GDEM itself and for the official t...
متن کاملThe Penetration Depth Derived from the Synthesis of ALOS/PALSAR InSAR Data and ASTER GDEM for the Mapping of Forest Biomass
The Global Digital Elevation Model produced from stereo images of Advanced Spaceborne Thermal Emission and Reflection Radiometer data (ASTER GDEM) covers land surfaces between latitudes of 83°N and 83°S. The Phased Array type L-band Synthetic Aperture Radar (PALSAR) onboard Advanced Land Observing Satellite (ALOS) collected many SAR images since it was launched on 24 January 2006. The combinati...
متن کاملAccuracy Enhancement of ASTER Global Digital Elevation Models Using ICESat Data
Global Digital Elevation Models (GDEM) are considered very attractive for current research and application areas due to their free and wide range accessibility. The ASTER Global Digital Elevation Model exhibits the highest spatial resolution data of all global DEMs and it is generated for almost the whole globe. Unfortunately, ASTER GDEM data include many artifacts and height errors that decrea...
متن کاملAccuracy Assessment of Aster Global Dem over Turkey
The aim of this study is to analyze the accuracy of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) over Istanbul metropolitan city. Accuracy assessment was conducted by comparing ASTER GDEM with a reference DEM derived from 1/5.000-scaled topographic maps. The selected area has wide range of elevations since it covers coastal and mou...
متن کاملElimination of the Outliers from Aster Gdem Data
Digital Elevation Models (DEM) provided by stereo matching techniques often contain unwanted outliers due to the mismatched points. Detected outliers are candidate for wrong data that may otherwise adversely lead to model misspecification, biased parameter estimation and incorrect results (Maimon and Rokach, 2005). Therefore detection of outlying observations and elimination of them from the da...
متن کامل